已知数列的通项公式为,其中,、.
(1)试写出一组、的值,使得数列中的各项均为正数.
(2)若,,数列满足,且对任意的(),均有,写出所有满足条件的的值.
(3)若,数列满足,其前项和为,且使(、,)的和有且仅有组,、、…、中有至少个连续项的值相等,其它项的值均不相等,求、的最小值.
已知函数,其中.
(1)证明:函数在上为增函数.
(2)证明:不存在负实数使得.
已知函数,其中、为非零实常数.
(1)若,的最大值为,求、的值.
(2)若,是图像的一条对称轴,求的值,使其满足,且.
如图,小凳凳面为圆形,凳脚为三根细钢管.考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点与凳面圆形的圆心的连线垂直于凳面和地面,且分细钢管上下两段的比值为,三只凳脚与地面所成的角均为.若、、是凳面圆周的三等分点,厘米,求凳子的高度及三根细钢管的总长度(精确到).
若函数的定义域与区间的交集由个开区间组成,则的值为( )
A. B. C. D.
若△的三条边,,满足,则△( )
A.一定是锐角三角形
B.一定是直角三角形
C.一定是钝角三角形
D.可能是锐角三角形,也可能是钝角三角形