某学校高一数学兴趣小组对学生每周平均体育锻炼小时数与体育成绩优秀(体育成绩满分100分,不低于85分称优秀)人数之间的关系进行分析研究,他们从本校初二,初三,高一,高二,高三年级各随机抽取了40名学生,记录并整理了这些学生周平均体育锻炼小时数与体育成绩优秀人数,得到如下数据表:
| 初二 | 初三 | 高一 | 高二 | 高三 |
周平均体育锻炼小时数工(单位:小时) | 14 | 11 | 13 | 12 | 9 |
体育成绩优秀人数y(单位:人) | 35 | 26 | 32 | 26 | 19 |
该兴趣小组确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的是初三,高一,高二的3组数据,请根据这3组数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过1,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?
参考数据:,.
参考公式:,.
已知椭圆C:(a>b>0)的左,右焦点分别为,,,经过点的直线(不与x轴重合)与椭圆C相交于A,B两点,的周长为8.
(1)求椭圆C的方程;
(2)经过椭圆C上的一点Q作斜率为,(,)的两条直线分别与椭圆C相交于异于Q点的M,N两点。若M,N关于坐标原点对称,求的值.
已知动点P到点M(-3,0)的距离是点P到坐标原点O的距离的2倍,记动点P的轨迹为曲线C.
(1)求曲线C的方程;
(2)若直线与曲线C相交于A,B两点,求的值.
一个不透明的箱子中装有大小形状相同的5个小球,其中2个白球标号分别为,,3个红球标号分别为,,,现从箱子中随机地一次取出两个球.
(1)求取出的两个球都是白球的概率;
(2)求取出的两个球至少有一个是白球的概率.
设椭圆C:(a>b>0)的左,右焦点分别为F1,经过点F1的直线与椭圆C相交于M,N两点.若|MF2|=| F1F2|,且7|MF1|=4| MN|,则椭圆C的离心率为___________.
某射击运动员在一次训练中连续射击了两次。设命题p:第一次射击击中目标,命题q:第二次射击击中目标,命题r:两次都没有击中目标.用p,q及逻辑联结词“或”,“且”,“非”(或∨,∧,)表示命题r为________.