已知多项式和,如何求它们的和?
设函数,.
(1)若,求实数的取值范围;
(2)若为正整数,设的解集为,求及数列的前项和;
(3)对于(2)中的数列,设,求数列的前项和的最大值.
如图一块长方形区域,,,在边的中点处有一个可转动的探照灯,其照射角始终为,设,探照灯照射在长方形内部区域的面积为.
(1)当时,求关于的函数关系式;
(2)当时,求的最大值;
(3)若探照灯每9分钟旋转“一个来回”(自转到,再回到,称“一个来回”,忽略在及处所用的时间),且转动的角速度大小一定,设边上有一点,且,求点在“一个来回”中被照到的时间.
已知m>1,直线,椭圆,分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,,的重心分别为.若原点在以线段,为直径的圆内,求实数的取值范围.
函数和的图像的示意图如图所示,设两函数的图像交于点,,且.
(1)设曲线,分别对应函数和,请指出图中曲线,对应的函数解析式,若不等式对任意恒成立,求的取值范围;
(2)若,,且、,求、的值.
如图,四棱锥的底面是边长为1的菱形,其中,垂直于底面,;
(1)求四棱锥的体积;
(2)设棱的中点为,求异面直线与所成角的大小.