设全集.若集合,,则 .
在平面直角坐标系 xOy 中,已知椭圆 C:=1(a>b>0)的离心率为,且过点,点P在第四象限, A为左顶点, B为上顶点, PA交y轴于点C,PB交x轴于点D.
(1) 求椭圆 C 的标准方程;
(2) 求 △PCD 面积的最大值.
如图,在四棱锥中,,∥,且,,.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)求直线与平面所成角的正弦值.
如图,已知位于轴左侧的圆与轴相切于点且被轴分成的两段圆弧长之比为,直线与圆相交于,两点,且以为直径的圆恰好经过坐标原点.
(1)求圆的方程;
(2)求直线的斜率的取值范围.
如图所示,在四棱锥中,底面是且边长为的菱形,侧面为正三角形,其所在平面垂直于底面,若为的中点,为的中点.
(1)求证:平面;
(2)求证:;
(3)在棱上是否存在一点,使平面平面,若存在,确定点的位置;若不存在,说明理由
已知,,且.
(1)求的最大值;
(2)求的最小值.