如图,在三棱椎A﹣BCD中,底面△BCD为正三角形,且AB=AC=AD,设(0<λ<1),记AP与BC、BD所成的角分别为α、β,则( )
A.α≥β B.α≤β
C.当λ∈时,α≥β D.当λ∈时,α≤β
正方形ABCD的四个顶点都在双曲线1(a>0,b>0)上,若双曲线的焦点都在正方形的外部,则双曲线的离心率的取值范围是( )
A.(1,) B.() C.() D.(1,)
已知椭圆C:(a>b>0)的右焦点为F(2,0),过F作圆x2+y2=b2的一条切线,切点为T,延长FT交椭圆C于点A,若T为线段AF的中点,则椭圆C的方程为( )
A. B.
C. D.
已知长方体ABCD﹣A1B1C1D1中,AA1=AB=2AD,则直线AA1与平面AB1D1所成的角的正弦值为( )
A. B. C. D.
已知直线xy﹣2=0及直线xy+6=0截圆C所得的弦长均为6,则圆C的半径为( )
A. B. C.4 D.5
我国南北朝时期数学家、天文学家祖暅提出了著名的祖暅原理:“幂势既同,则积不容异”其中“幂”即是截面积,“势”是几何体的高,意思是两等高立方体,若在每一等高处的截面积都相等,则两立方体的体积相等,已知某不规则几何体与如图所示的几何体满足“幂势同”,则该不规则几何体的体积为
A. B. C. D.