在等腰Rt△ABC中,∠BAC=90°,腰长为2,D、E分别是边AB、BC的中点,将△BDE沿DE翻折,得到四棱锥B﹣ADEC,且F为棱BC中点,BA.
(1)求证:EF⊥平面BAC;
(2)在线段AD上是否存在一点Q,使得AF∥平面BEQ?若存在,求二面角Q﹣BE﹣A的余弦值,若不存在,请说明理由.
设抛物线C:y2=4x的焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(﹣1,0).
(1)当l与x轴垂直时,求△ABM的外接圆方程;
(2)记△AMF的面积为S1,△BMF的面积为S2,当S1=4S2时,求直线l的方程.
如图,已知四边形和均为直角梯形,,且,平面平面,.
(1)求证:平面;
(2)求三棱锥的体积.
已知各项均不相等的等差数列{an}满足a1=1,且a2,a4,a9成等比数列.
(1)求{an}的通项公式;
(2)设bn=(﹣1)n•an,令cn=b1+b2+b3+…+b2n,求{cn}的前10项和.
设p:∃x0∈R,使得x02+2ax0+2+a=0成立;q:∀x>0,不等式x2﹣2x+a>0恒成立.若“p∧q”为真命题,求实数a的取值范围.
已知棱长为3的正方体ABCD﹣A1B1C1D1中,M是BC的中点,点P是侧面DCC1D1内(包括边界)的一个动点,且满足∠APD=∠MPC.则当三棱锥P﹣BCD的体积最大时,三棱锥P﹣BCD的外接球的表面积为_____.