设数列的前n项和为,若对任意正整数n,总存在正整数m,使得,则称是“H数列”;
(1)若数列的前n项和(),判断数列是否是“H数列”?若是,给出证明;若不是,说明理由;
(2)设数列是常数列,证明:为“H数列”的充要条件是;
(3)设是等差数列,其首项,公差,若是“H数列”,求d的值;
已知.
(1)当时,解不等式;
(2)若关于的方程的解集中恰好有一个元素,求实数的值;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.
甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求),每小时可获得利润是元.
(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.
已知函数;
(1)求函数在上的最大值,并指出取得最大值时对应的x的值;
(2)若,且,求的值;
解关于x的不等式:;
记方程①:,方程②:,方程③:,其中,,是正实数.当,,成等比数列时,下列选项中,能推出方程③无实根的是( )
A.方程①有实根,且②有实根 B.方程①有实根,且②无实根
C.方程①无实根,且②有实根 D.方程①无实根,且②无实根