行列式中,元素1的代数余子式是______.
已知线性方程组的增广矩阵为,若该方程组解为,则实数______.
已知向量,,且,则实数______.
设数列的前项和为,且.
(1)求出,,的值,并求出及数列的通项公式;
(2)设,求数列的前项和;
(3)设,在数列中取出(且)项,按照原来的顺序排列成一列,构成等比数列,若对任意的数列,均有,试求的最小值.
已知直线是双曲线的一条渐近线,点都在双曲线上,直线与轴相交于点,设坐标原点为.
(1)求双曲线的方程,并求出点的坐标(用表示);
(2)设点关于轴的对称点为,直线与轴相交于点.问:在轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由.
(3)若过点的直线与双曲线交于两点,且,试求直线的方程.
已知函数满足,其中为实常数.
(1)求的值,并判定函数的奇偶性;
(2)若不等式在恒成立,求实数的取值范围.