满分5 > 高中数学试题 >

上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近...

上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组,第二组,第六组,得到如图所示的频率分布直方图:

1)试由样本频率分布直方图估计该校数学成绩的平均分数;

2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为,求的概率.

附:若,则.

 

(1)112;(2). 【解析】 (1)由频率之和为1,可求出的频率,进而由频率分布直方图求出平均数即可; (2)结合正态分布,可求得全市前13名的最低分数,从而可知这50名学生中成绩在125分(含125分)以上的人数,及在全市前13名的人数,进而求出的概率即可. (1)由频率分布直方图可知的频率为 , ∴估计该校全体学生的数学平均成绩为: ; (2)由于,根据正态分布:, 故,即. ∴前13名的成绩全部在135分以上. 根据频率分布直方图可知这50人中成绩在135以上(包括135分)的有人,而在的学生有人. ∴的取值为0,1,2,3. ,. .
复制答案
考点分析:
相关试题推荐

某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

 

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

时间代号t

1

2

3

4

5

z

0

1

2

3

5

 

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

 

查看答案

司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.

(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;

 

开车时使用手机

开车时不使用手机

合计

男性司机人数

 

 

 

女性司机人数

 

 

 

合计

 

 

 

 

 

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望

参考公式与数据:

参考数据:

 

 

参考公式

,其中.

 

查看答案

某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有两个题目,该学生答对两题的概率分别为,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).

1)求该学生被公司聘用的概率;

2)设该学生应聘结束后答对的题目或问题的总个数为,求的分布列和数学期望.

 

查看答案

(请写出式子再写计算结果)有4个不同的小球,4个不同的盒子,现在要把球全部放入盒内:

1)共有多少种方法?

2)若每个盒子不空,共有多少种不同的方法?

3)恰有一个盒子不放球,共有多少种放法?

 

查看答案

下列关于概率和统计的几种说法:①10名工人某天生产同一种零件,生产的件数分别是15171410151717161412,设其平均数为,中位数为,众数为,则的大小关系为;②样本4210-2的标准差是2;③在面积为内任选一点,则随机事件的面积小于的概率为;④从写有0129的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是.其中正确说法的序号有______.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.