满分5 > 高中数学试题 >

判断下列各对事件是不是相互独立事件. (1)甲组3名男生、2名女生,乙组2名男生...

判断下列各对事件是不是相互独立事件.

1)甲组3名男生、2名女生,乙组2名男生、3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,从甲组中选出1名男生从乙组中选出1名女生

2)容器内盛有5个白乒乓球和3个黄乒乓球,8个球中任意取出1个,取出的是白球从剩下的7个球中任意取出1个,取出的还是白球

3)掷一枚骰子一次,出现偶数点出现3点或6”.

 

(1)是;(2)不是;(3)是 【解析】 根据相互独立事件的定义,分别分析即可求解. (1)“从甲组中选出1名男生”这一事件发生与否,不影响乙组中的试验结果,因此对“从乙组中选出1名女生”这一事件发生的概率没有影响,所以它们是相互独立事件. (2)“从8个球中任意取出1个,不放回再取一球”,画树状图得相关事件的样本点数. 设“从8个球中任意取出1个,取出的是白球”为事件A,“从剩下的7个球中任意取出1个,取出的还是白球”为事件B,则,,,故,所以两者不是相互独立事件. (3)记A:出现偶数点,B:出现3点或6点,则,,,因此,,,所以,所以事件A与B相互独立.
复制答案
考点分析:
相关试题推荐

对在直角坐标系的第一象限内的任意两点作如下定义:,那么称点是点的“上位点”,同时点是点的“下位点”.

1)试写出点的一个“上位点”坐标和一个“下位点”坐标;

2)设均为正数,且点是点的上位点,请判断点是否既是点的“下位点”又是点的“上位点”,如果是请证明,如果不是请说明理由;

3)设正整数满足以下条件:对任意实数,总存在,使得点既是点的“下位点”,又是点的“上位点”,求正整数的最小值.

 

查看答案

上饶市在某次高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组,第二组,第六组,得到如图所示的频率分布直方图:

1)试由样本频率分布直方图估计该校数学成绩的平均分数;

2)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为,求的概率.

附:若,则.

 

查看答案

某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份x

2011

2012

2013

2014

2015

储蓄存款y(千亿元)

5

6

7

8

10

 

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

时间代号t

1

2

3

4

5

z

0

1

2

3

5

 

(Ⅰ)求z关于t的线性回归方程;

(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程,其中

 

查看答案

司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命. 为了研究司机开车时使用手机的情况,交警部门调查了名机动车司机,得到以下统计:在名男性司机中,开车时使用手机的有人,开车时不使用手机的有人;在名女性司机中,开车时使用手机的有人,开车时不使用手机的有人.

(1)完成下面的列联表,并判断是否有的把握认为开车时使用手机与司机的性别有关;

 

开车时使用手机

开车时不使用手机

合计

男性司机人数

 

 

 

女性司机人数

 

 

 

合计

 

 

 

 

 

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为,若每次抽检的结果都相互独立,求的分布列和数学期望

参考公式与数据:

参考数据:

 

 

参考公式

,其中.

 

查看答案

某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有两个题目,该学生答对两题的概率分别为,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为,至少答对一个问题即可被聘用,若只答对一问聘为职员,答对两问聘为助理(假设每个环节的每个题目或问题回答正确与否是相互独立的).

1)求该学生被公司聘用的概率;

2)设该学生应聘结束后答对的题目或问题的总个数为,求的分布列和数学期望.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.