满分5 > 高中数学试题 >

如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点. (Ⅰ)求证...

如图,在四棱锥中,平面ABCD,底部ABCD为菱形,ECD的中点.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

 

(Ⅰ)见解析; (Ⅱ)见解析; (Ⅲ)见解析. 【解析】 (Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论; (Ⅱ)由几何体的空间结构特征首先证得线面垂直,然后利用面面垂直的判断定理可得面面垂直; (Ⅲ)由题意,利用平行四边形的性质和线面平行的判定定理即可找到满足题意的点. (Ⅰ)证明:因为平面,所以; 因为底面是菱形,所以; 因为,平面, 所以平面. (Ⅱ)证明:因为底面是菱形且,所以为正三角形,所以, 因为,所以; 因为平面,平面, 所以; 因为 所以平面, 平面,所以平面平面. (Ⅲ)存在点为中点时,满足平面;理由如下: 分别取的中点,连接, 在三角形中,且; 在菱形中,为中点,所以且,所以且,即四边形为平行四边形,所以; 又平面,平面,所以平面.
复制答案
考点分析:
相关试题推荐

已知lm是平面外的两条不同直线.给出下列三个论断:

lm;②m;③l

以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________

 

查看答案

αβ为两个平面,则αβ的充要条件是

A. α内有无数条直线与β平行

B. α内有两条相交直线与β平行

C. αβ平行于同一条直线

D. αβ垂直于同一平面

 

查看答案

如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则(  )

A.,且直线是相交直线

B.,且直线是相交直线

C.,且直线是异面直线

D.,且直线是异面直线

 

查看答案

在正方体中,为棱的中点,则(    ).

A. B. C. D.

 

查看答案

如图,在下列四个正方体中,AB为正方体的两个顶点,MNQ为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是(    )

A. B.

C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.