满分5 > 高中数学试题 >

图1是由矩形和菱形组成的一个平面图形,其中, ,将其沿折起使得与重合,连结,如图...

图1是由矩形和菱形组成的一个平面图形,其中,将其沿折起使得重合,连结,如图2.

(1)证明图2中的四点共面,且平面平面

(2)求图2中的四边形的面积.

 

(1)见详解;(2)4. 【解析】 (1)因为折纸和粘合不改变矩形,和菱形内部的夹角,所以,依然成立,又因和粘在一起,所以得证.因为是平面垂线,所以易证.(2) 欲求四边形的面积,需求出所对应的高,然后乘以即可. (1)证:,,又因为和粘在一起. ,A,C,G,D四点共面. 又. 平面BCGE,平面ABC,平面ABC平面BCGE,得证. (2)取的中点,连结.因为,平面BCGE,所以平面BCGE,故, 由已知,四边形BCGE是菱形,且得,故平面DEM. 因此. 在中,DE=1,,故. 所以四边形ACGD的面积为4.
复制答案
考点分析:
相关试题推荐

如图,在四棱锥中,平面ABCD,底部ABCD为菱形,ECD的中点.

(Ⅰ)求证:BD⊥平面PAC

(Ⅱ)若∠ABC=60°,求证:平面PAB⊥平面PAE

(Ⅲ)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.

 

查看答案

已知lm是平面外的两条不同直线.给出下列三个论断:

lm;②m;③l

以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________

 

查看答案

αβ为两个平面,则αβ的充要条件是

A. α内有无数条直线与β平行

B. α内有两条相交直线与β平行

C. αβ平行于同一条直线

D. αβ垂直于同一平面

 

查看答案

如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则(  )

A.,且直线是相交直线

B.,且直线是相交直线

C.,且直线是异面直线

D.,且直线是异面直线

 

查看答案

在正方体中,为棱的中点,则(    ).

A. B. C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.