如图,已知曲线,曲线,P是平面上一点,若存在过点P的直线与都有公共点,则称P为“C1—C2型点”.
(1)在正确证明的左焦点是“C1—C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);
(2)设直线与有公共点,求证,进而证明原点不是“C1—C2型点”;
(3)求证:圆内的点都不是“C1—C2型点”.
各项均为正数的数列的前项和为,且对任意正整数,都有.
(1)求数列的通项公式;
(2)如果等比数列共有2016项,其首项与公比均为2,在数列的每相邻两项与之间插入个后,得到一个新的数列.求数列中所有项的和;
(3)是否存在实数,使得存在,使不等式成立,若存在,求实数的范围,若不存在,请说明理由.
已知,函数,其中.
(Ⅰ)求使得等式成立的的取值范围;
(Ⅱ)求在区间上的最大值.
如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
的内角A,B,C的对边分别为a,b,c.已知.
(1)求角C;(2)若,,求的周长.
已知符号函数,是上的增函数,,则( )
A.
B.
C.
D.