袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到”和””平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:
232 321 230 023 123 021 132 220 011 203 331 100
231 130 133 231 031 320 122 103 233 221 020 132
由此可以估计,恰好第三次就停止的概率为_____.
一个袋子中有5个红球,4个绿球,8个黑球,如果随机地摸出一个球,记事件摸出黑球},事件模出绿球},事件摸出红球},则______;______.
某高校从参加今年自主招生考试的学生中随机抽取50名学生的成绩作为样本,得到频率分布表如下:( )
A.表中①位置的数据是12
B.表中②位置的数据是0.3
C.在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,则第三组抽取2人
D.在第三、四、五组中用分层抽样法抽取的6名学生中录取2名学生,则2人中至少有1名是第四组的概率为0.5
下列各对事件中,为相互独立事件的是( )
A.掷一枚骰子一次,事件M“出现偶数点”;事件N“出现3点或6点”
B.袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到白球”
C.袋中有3白、2黑共5个大小相同的小球,依次不放同地摸两球,事件M“第一次摸到白球”,事件N“第二次摸到黑球”
D.甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M“从甲组中选出1名男生”,事件N“从乙组中选出1名女生”
下列命题中不正确的是( )
A.根据古典概型概率计算公式求出的值是事件A发生的概率的精确值
B.根据古典概型试验,用计算机或计算器产生随机整数统计试验次数N和事件A发生的次数,得到的值是的近似值
C.频率是随机的,在试验前不能确定,随着试验次数的增加,频率会越来越接近概率
D.5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可性相同
设两个独立事件A和B同时不发生的概率是p,A发生B不发生与A不发生B发生的概率相同,则事件A发生的概率为( )
A. B. C. D.