设,.已知函数,.
(Ⅰ)求的单调区间;
(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,
(i)求证:在处的导数等于0;
(ii)若关于x的不等式在区间上恒成立,求b的取值范围.
设椭圆的左、右焦点分别为,左项点为上顶点为.已知.
(1)求椭圆的离心率;
(2)设为椭圆上在第一象限内一点,射线与椭圆的另一个公共点为,满足,直线交轴于点,的面积为.
(i)求椭圆的方程.
(ii)过点作不与轴垂直的直线交椭圆于(异于点)两点,试判断的大小是否为定值,并说明理由.
已知数列是首项为正数的等差数列,数列的前项和为.
(1)求,并求出数列的通项公式;
(2)设,求数列的前项和.
如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求直线BF和平面BCE所成角的正弦值.
已知函数,.
(1)求函数的最小正周期;
(2)若,,求的值.
某中学调查了某班全部名同学参加学校社团的情况,数据如下表:(单位:人)
| 参加书法社 | 未参加书法社 |
参加辩论社 | ||
未参加辩论社 |
(1)从该班随机选名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社又参加辩论社的名同学中,有名男同学,名女同学.现从这名同学中男女姓各随机选人(每人被选到的可能性相同).
(i)列举出所有可能结果;
(ii)设为事件“被选中且未被选中”,求事件发生的概率.