满分5 > 高中数学试题 >

已知数列满足. 证明数列为等差数列; 求数列的通项公式.

已知数列满足

证明数列为等差数列;

求数列的通项公式.

 

(1)见解析;(2) 【解析】 (1)已知递推关系取倒数,利用等差数列的定义,即可证明. (2)由(1)可知数列为等差数列,确定数列的通项公式,即可求出数列的通项公式. 证明:,且有, , 又, ,即,且, 是首项为1,公差为的等差数列. 【解析】 由知,即, 所以.
复制答案
考点分析:
相关试题推荐

已知的顶点边上的中线所在直线方程为 边上 的高,所在直线方程为.

(1)求顶点 的坐标;

(2)求直线的方程.

 

查看答案

在平面直角坐标系中,为原点,,动点满足,则的最大值是       

 

查看答案

正项等比数列中,存在两项使得,且,则的最小值为______.

 

查看答案

满足不等式组,则的最小值为_____.

 

查看答案

已知,则____________________________

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.