如图,空间直角坐标系中,四棱锥的底面是边长为的正方形,且底面在平面内,点在轴正半轴上,平面,侧棱与底面所成角为45°;
(1)若是顶点在原点,且过、两点的抛物线上的动点,试给出与满足的关系式;
(2)若是棱上的一个定点,它到平面的距离为(),写出、两点之间的距离,并求的最小值;
(3)是否存在一个实数(),使得当取得最小值时,异面直线与互相垂直?请说明理由;
三角形的三个内角A、B、C所对边的长分别为、、,设向量,若//.
(1)求角B的大小;
(2)求的取值范围.
有一容积为的正方体容器,在棱、和面对角线的中点各有一小孔、、,若此容器可以任意放置,则其可装水的最大容积是( )
A. B. C. D.
函数是R上的增函数,则是的( )
A.充要条件 B.必要不充分条件
C.充分不必要条件 D.既不充分也不必要条件
矩阵的一种运算,该运算的几何意义为平面上的点在矩阵作用下变换成点,若曲线,在矩阵的作用下变换成曲线,则的值为( )
A. B. C. D.
等差数列的前n项和记为,若的值为一个确定的常数,则下列各数中也是常数的是( )
A. B. C. D.