已知集合,,.
(1)求;
(2),求的取值范围.
对于问题“设实数满足,证明:,,中至少有一个不超过” .
甲、乙、丙三个同学都用反证法来证明,他们的解题思路分别如下:
甲同学:假设对于满足的任意实数,,,都大于矛盾的,从而证明原命题.
乙同学:假设存在满足的实数,,,都大于,再证明所有满足的均与“,,都大于”矛盾,从而证明原命题.
丙同学:假设存在满足的实数,,,都大于。再证明所有满足的均与“,,都大于”矛盾,从而证明原命题.
那么,下列正确的选项为( )
A.只有甲同学的解题思路正确
B.只有乙同学的解题思路正确
C.只有丙同学的解题思路正确
D.有两位同学的解题思路都正确
设取实数,则与表示同一个函数的是( )
A.,
B.,
C.,
D.,
设,则“”是“”的( )
A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
三国时期赵爽在《勾股方圆图注》中,对勾股定理的证明可用现代数学表述为如下图所示,我们教材中利用该图作为几何解释的是( ).
A.如果,,那么 B.如果,那么
C.对任意实数和,有,当且仅当时等号成立 D.如果,那么
小明最近在研究一问题:“已知实数,若,则”,老师告诉他这是假命题,那么符合条件的一个反例可以是______.