已知椭圆经过点离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过椭圆左焦点的直线(不经过点且不与轴重合)与椭圆交于两点,与直线:交于点,记直线的斜率分别为.则是否存在常数,使得向量共线?若存在求出的值;若不存在,说明理由.
已知数列的前项和为,且(),.数列为等比数列,且.
(Ⅰ)求和的通项公式;
(Ⅱ)设,求数列的前项和.
在如图所示的几何体中,四边形是正方形,四边形是梯形,∥,,平面平面,且.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)已知点在棱上,且异面直线与所成角的余弦值为,求线段的长.
某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2所.
(Ⅰ)求甲、乙、丙三名同学都选高校的概率;
(Ⅱ)若已知甲同学特别喜欢高校,他必选校,另在三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2所.
(ⅰ)求甲同学选高校且乙、丙都未选高校的概率;
(ⅱ)记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.
在中,内角所对的边分别为,.
(1)求的值;
(2)求的值.
已知菱形的边长为2,,点分别在边上,,,则_________.