在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)当
时,求
的普通方程和
的直角坐标方程;
(2)若直线
与曲线
交于
两点,直线
的倾斜角
,点
为直线
与
轴的交点,求
的最小值.
已知函数
.
(1)讨论
的单调性.
(2)试问是否存在
,使得
对
恒成立?若存在,求
的取值范围;若不存在,请说明理由.
当前,以“立德树人”为目标的课程改革正在有序推进. 高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施. 某地区2018年初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分. 某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到右边频率分布直方图,且规定计分规则如下表:


(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于33分的概率;
(2)若该校初三年级所有学生的跳绳个数
服从正态分布
,用样本数据的平均值和方差估计总体的期望和方差,已知样本方差
(各组数据用中点值代替). 根据往年经验,该校初三年级学生经过一年的训练,正式测试时每人每分钟跳绳个数都有明显进步,假设今年正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:
(ⅰ)预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)
(ⅱ)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为
,求随机变量
的分布列和期望. 附:若随机变量
服从正态分布
,则
,
,
.
已知椭圆
:
的离心率为
,椭圆的四个顶点围成的四边形的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)直线
与椭圆
交于
,
两点,
的中点
在圆
上,求
(
为坐标原点)面积的最大值.
如图,四边形
与
均为菱形,
,且
.

(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)若
为线段
上的一点,满足直线
与平面
所成角的正弦值为
,求线段
的长.
已知在锐角中,角A,B,C的对边分别为a,b,c,且![]()
.![]()
Ⅰ![]()
求角A的大小;![]()
Ⅱ![]()
已知函数![]()
,且方程
有解,求实数t的取值范围.
