设,为正整数,一个正整数数列满足.对,定义集合.数列中的是集合中元素的个数.
(1)若数列为5,3,3,2,1,1,写出数列;
(2)若,,为公比为的等比数列,求;
(3)对,定义集合,令是集合中元素数的个数.求证:对,均有.
已知函数.
(1)若函数的最小值为0,求的值;
(2)设,求函数的单调区间;
(3)设函数与函数的图像的一个公共点为,若过点有且仅有一条公切线,求点的坐标及实数的值.
如图,在四棱锥中, 平面平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
已知函数.
(1)求函数的最小正周期和单调递减区间;
(2)在中,角的对边分别为,若,,,求的值.
已知在等比数列{an}中,a1=2,且a1,a2,a3-2成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:,求数列{bn}的前n项和Sn.
若对任意的,均有成立,则称函数为函数和函数在区间上的“函数”.已知函数,,,且是和在区间上的“函数”,则实数的取值范围是__________.