某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
A.1 B.2
C.3 D.4
设非空集合满足,则( )
A.,有 B.,有
C.,使得 D.,使得
若为虚数单位,复数满足,则的虚部为( )
A. B. C. D.
设不等式的解集为.
(1)求集合;
(2)若,,,求证:.
在直角坐标系中,圆经过伸缩变换后得到曲线.以坐标原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线的极坐标方程为.
(1)求曲线的直角坐标方程及直线的直角坐标方程;
(2)设点是上一动点,求点到直线的距离的最大值.
已知是抛物线上的两个点,点的坐标为,直线的斜率为.设抛物线的焦点在直线的下方.
(Ⅰ)求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为. 判断四边形是否为梯形,并说明理由.