已知点,的坐标分别为,,三角形的两条边,所在直线的斜率之积是.
(I)求点的轨迹方程:
(II)设直线方程为,直线方程为,直线交于点,点,关于轴对称,直线与轴相交于点.若面积为,求的值.
如图,四棱锥中,底面是边长为2的正方形,侧面底面,为上的点,且平面
(1)求证:平面平面;
(2)当三棱锥体积最大时,求二面角的余弦值.
某市对高二学生的期末理科数学测试的数据统计显示,全市10000名学生的成绩服从正态分布,现从甲校100分以上(含100分)的200份试卷中用系统抽样中等距抽样的方法抽取了20份试卷来分析(试卷编号为001,002,…,200)统计如下:
试卷编号 | ||||||||||
试卷得分 | 109 | 118 | 112 | 114 | 126 | 128 | 127 | 124 | 126 | 120 |
试卷编号 | ||||||||||
试卷得分 | 135 | 138 | 135 | 137 | 135 | 139 | 142 | 144 | 148 | 150 |
注:表中试卷编
(1)写出表中试卷得分为144分的试卷编号(写出具体数据即可);
(2)该市又从乙校中也用与甲校同样的抽样方法抽取了20份试卷,将甲乙两校这40份试卷的得分制作了茎叶图(如图)在甲、乙两校这40份学生的试卷中,从成绩在140分以上(含140分)的学生中任意抽取3人,该3人在全市排名前15名的人数记为,求随机变量的分布列和期望.
附:若随机变量服从正态分布,则,,.
设数列满足,
(1)求证:数列是等比数列;
(2)求数列的前项和.
一个四面体的顶点在空间直角坐标系中的坐标分别是,,,,则该四面体的外接球的体积为__________.
如图所示,有三根针和套在一根针上的个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.
将个金属片从1号针移到3号针最少需要移动的次数记为,则__________.