若点在直线上,则( )
A. B. C. D.
将所有平面向量组成的集合记作,是从到的对应关系,记作或,其中、、、都是实数,定义对应关系的模为:在的条件下的最大值记作,若存在非零向量,及实数使得,则称为的一个特殊值;
(1)若,求;
(2)如果,计算的特征值,并求相应的;
(3)若,要使有唯一的特征值,实数、、、应满足什么条件?试找出一个对应关系,同时满足以下两个条件:①有唯一的特征值,②,并验证满足这两个条件.
在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为;
(1)求轨迹的方程;
(2)求定点到轨迹上任意一点的距离的最小值;
(3)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.
设数列的前项和为,已知,,;
(1)求证:数列是等差数列;
(2)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值.
老王有一块矩形旧铁皮,其中,,他想充分利用这块铁皮制作一个容器,他有两个设想:设想1是沿矩形的对角线把折起,使移到点,且在平面上的射影恰好在上,再利用新购铁皮缝制其余两个面得到一个三棱锥;设想2是利用旧铁皮做侧面,新购铁皮做底面,缝制一个高为,侧面展开图恰为矩形的圆柱体;
(1)求设想1得到的三棱锥中二面角的大小;
(2)不考虑其他因素,老王的设想1和设想2分别得到的几何体哪个容积更大?说明理由.
已知复数满足:(为虚数单位),的实部为,虚部为,角的终边经过点;
(1)求复数在复平面上对应的点的坐标及复数的模;
(2)求.