集合,则( )
A. B. C. D.
设集合的元素均为实数,若对任意,存在,,使得且,则称元素个数最少的和为的“孪生集”;称的“孪生集”的“孪生集”为的“2级孪生集”;称的“2级孪生集”的“孪生集”为的“3级孪生集”,依此类推……
(1)设,直接写出集合的“孪生集”;
(2)设元素个数为的集合的“孪生集”分别为和,若使集合中元素个数最少且所有元素之和为2,证明:中所有元素之和为;
(3)若,请直接写出的“级孪生集”的个数,及所有“级孪生集”的并集的元素个数.
设椭圆的左、右焦点分别为,,离心率为,过点的直线交椭圆于点,(不与左右顶点重合),连接,已知的周长为8.
(1)求椭圆的方程;
(2)设,若,求直线的方程.
已知为函数的极值点.
(1)求的值;
(2)设函数,若对,,使得,求的取值范围.
某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.
维修次数 | 2 | 3 | 4 | 5 | 6 |
甲设备 | 5 | 10 | 30 | 5 | 0 |
乙设备 | 0 | 5 | 15 | 15 | 15 |
(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;
(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
如图所示,在四棱锥中,底面四边形为正方形,已知平面,,.
(1)证明:;
(2)求与平面所成角的正弦值;
(3)在棱上是否存在一点,使得平面平面?若存在,求的值并证明,若不存在,说明理由.