在复平面内,复数所对应的点位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
已知函数f(x)=|x+m|+|2x-1|.
(1)当m=-1时,求不等式f(x)≤2的解集;
(2)若f(x)≤|2x+1|的解集包含,求m的取值范围.
直线 的极坐标方程为 ,以极点为坐标原点,极轴为x轴建立直角坐标系,曲线C的参数方程为 (为参数).
(1)将曲线C上各点纵坐标伸长到原来的2倍,得到曲线,写出的极坐标方程;
(2)射线与交的交点分别为,射线与和的交点分别为,求四边形的面积.
已知函数.
(1)讨论的单调性;
(2)若,求的取值范围.
已知抛物线:,直线:与交于、两点,为坐标原点.
(1)当直线过抛物线的焦点时,求;
(2)是否存在直线使得直线?若存在,求出直线的方程;若不存在,请说明理由.
随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)
| 经常网购 | 偶尔或不用网购 | 合计 |
男性 | 50 |
| 100 |
女性 | 70 |
| 100 |
合计 |
|
|
|
(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?
(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;
②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.
参考公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |