过两点,的直线方程为( )
A. B. C. D.
已知数列,则是它的( )
A.第12项 B.第13项 C.第14项 D.第15项
已知函数,(其中为常数).
(1)如果函数和有相同的极值点,求的值;
(2)当,恒成立,求的取值范围;
(3)记函数,若函数有个不同的零点,求实数的取值范围.
已知椭圆的中心在原点,焦点在轴上,离心率为,且椭圆上的点到两个焦点的距离之和为.
(1)求椭圆的方程;
(2)设为椭圆的左顶点,过点的直线与椭圆交于点,与轴交于点,过原点且与平行的直线与椭圆交于点.求的值.
已知数列中,是它的前项和,并且,.
(1)设,求证:是等比数列;
(2)求数列的通项公式;
(3)设,求前项和.
在四棱锥中,底面是边长为的菱形,对角线与相交于点,,平面,平面与平面所成的角为45°,是的中点.
(1)证明:平面平面;
(2)求异面直线与所成角的余弦值;
(3)求直线与平面所成角的正弦值.