已知函数,其中为自然对数的底数.
(1)设函数(其中为的导函数),判断在上的单调性;
(2)若函数在定义域内无零点,试确定正数的取值范围.
已知点,过点作抛物线:的切线,切点在第二象限.
(1)求切点的纵坐标;
(2)有一离心率为的椭圆:恰好经过切点,设切线与椭圆的另一交点为点,记切线、、的斜率分别为、、,若,求椭圆的方程.
如图,已知四棱锥,底面为菱形,,,,,,为的中点.
(1)求证:平面平面;
(2)若点在线段上,当直线与平面所成角的正弦值为时,求线段的长.
某蛋糕店制作并销售一款蛋糕,制作一个蛋糕成本3元,且以8元的价格出售,若当天卖不完,剩下的则无偿捐献给饲料加工厂。根据以往100天的资料统计,得到如下需求量表。该蛋糕店一天制作了这款蛋糕个,以(单位:个,,)表示当天的市场需求量,(单位:元)表示当天出售这款蛋糕获得的利润.
需求量/个 | |||||
天数 | 15 | 25 | 30 | 20 | 10 |
(1)当时,若时获得的利润为,时获得的利润为,试比较和的大小;
(2)当时,根据上表,从利润不少于570元的天数中,按需求量分层抽样抽取6天.
(i)求此时利润关于市场需求量的函数解析式,并求这6天中利润为650元的天数;
(ii)再从这6天中抽取3天做进一步分析,设这3天中利润为650元的天数为,求随机变量的分布列及数学期望.
已知数列满足:,数列中,,且成等比数列;
(1)求证:是等差数列;
(2)是数列的前n项和,求数列{}的前n项和.
已知抛物线:与直线交于、两点(、两点分别在轴的上、下方),且弦长,则过,两点、圆心在第一象限且与直线相切的圆的方程为____________.