满分5 > 高中数学试题 >

随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大...

随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.

1)当时,求某个时间段需要检查污染源处理系统的概率;

2)若每套环境监测系统运行成本为300/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.

 

(1);(2)不会超过预算,理由见解析 【解析】 (1)求出某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为,某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为,可得某个时间段需要检查污染源处理系统的概率; (2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500.求得,,求得其分布列和期望,对其求导,研究函数的单调性,可得期望的最大值,从而得出结论. (1)某个时间段在开启3套系统就被确定需要检查污染源处理系统的概率为, 某个时间段在需要开启另外2套系统才能确定需要检查污染源处理系统的概率为 某个时间段需要检查污染源处理系统的概率为. (2)设某个时间段环境监测系统的运行费用为元,则的可能取值为900,1500. , 令,则 当时,,在上单调递增; 当时,,在上单调递减, 的最大值为, 实施此方案,最高费用为(万元), ,故不会超过预算.
复制答案
考点分析:
相关试题推荐

已知椭圆()的上顶点为,左焦点为,离心率为,直线与圆相切.

1)求椭圆的标准方程;

2)设过点且斜率存在的直线与椭圆相交于两点,线段的垂直平分线交轴于点,试判断是否为定值?并说明理由.

 

查看答案

如图,在三棱柱中,已知四边形为矩形,的角平分线.

1)求证:平面平面

2)求二面角的余弦值.

 

查看答案

中,内角的对边分别是,已知.

1)求角的值;

2)若,求的面积.

 

查看答案

已知双曲线()的左右焦点分别为为坐标原点,点为双曲线右支上一点,若,则双曲线的离心率的取值范围为_____.

 

查看答案

在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为______.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.