满分5 > 高中数学试题 >

在直角坐标系中,曲线的参数方程为(为参数).以为极点,轴的正半轴为极轴建立极坐标...

在直角坐标系中,曲线的参数方程为(为参数).为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为(),将曲线向左平移2个单位长度得到曲线.

1)求曲线的普通方程和极坐标方程;

2)设直线与曲线交于两点,求的取值范围.

 

(1)的极坐标方程为,普通方程为;(2) 【解析】 (1)根据三角函数恒等变换可得, ,可得曲线的普通方程,再运用图像的平移得依题意得曲线的普通方程为,利用极坐标与平面直角坐标互化的公式可得方程; (2)法一:将代入曲线的极坐标方程得,运用韦达定理可得,根据,可求得的范围; 法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得,运用韦达定理可得,根据,可求得的范围; (1), ,即曲线的普通方程为, 依题意得曲线的普通方程为, 令,得曲线的极坐标方程为; (2)法一:将代入曲线的极坐标方程得,则 ,,,异号 , ,,; 法二:设直线的参数方程为(为参数,为直线的倾斜角),代入曲线的普通方程得, 则,,,异号 ,,.
复制答案
考点分析:
相关试题推荐

已知函数().

1)讨论的单调性;

2)若对恒成立,求的取值范围.

 

查看答案

随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.

1)当时,求某个时间段需要检查污染源处理系统的概率;

2)若每套环境监测系统运行成本为300/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.

 

查看答案

已知椭圆()的上顶点为,左焦点为,离心率为,直线与圆相切.

1)求椭圆的标准方程;

2)设过点且斜率存在的直线与椭圆相交于两点,线段的垂直平分线交轴于点,试判断是否为定值?并说明理由.

 

查看答案

如图,在三棱柱中,已知四边形为矩形,的角平分线.

1)求证:平面平面

2)求二面角的余弦值.

 

查看答案

中,内角的对边分别是,已知.

1)求角的值;

2)若,求的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.