如图,在三棱台ABC–DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(Ⅰ)求证:BF⊥平面ACFD;
(Ⅱ)求直线BD与平面ACFD所成角的余弦值.
如图,四棱锥中,底面为矩形,面,为的中点.
(1)证明:平面;
(2)设,,三棱锥的体积 ,求A到平面PBC的距离.
中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.
已知l,m是平面外的两条不同直线.给出下列三个论断:
①l⊥m;②m∥;③l⊥.
以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.
在中,,.若绕直线旋转一周,则所形成的几何体的表面积为______.
如图是正方体的表面展开图,则在这个正方体中,
①与是异面直线;②与是异面直线;③与垂直.
以上三个说法中,正确的是_____(填序号).