如图,三棱锥P-ABC中,PA平面ABC,.
(Ⅰ)求三棱锥P-ABC的体积;
(Ⅱ)证明:在线段PC上存在点M,使得ACBM,并求的值.
四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
如图①,在直角梯形中,,,,点是边的中点,将沿折起,使平面平面,连接,,,得到如图②所示的几何体.
(1)求证:平面;
(2)若,与其在平面内的正投影所成角的正切值为,求点到平面的距离.
如图,菱形的对角线与交于点,点分别在上,交于点,将沿折起到的位置.
(Ⅰ)证明:;
(Ⅱ)若,求五棱锥的体积.
如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.
(1)求证:PA⊥BD;
(2)求证:平面BDE⊥平面PAC;
(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.
《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马中,侧棱底面,且,点是的中点,连接.
(Ⅰ)证明:平面. 试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;
(Ⅱ)记阳马的体积为,四面体的体积为,求的值.