若“”为真命题,则( )
A.、均为真命题 B.、均为假命题
C.、中至少有一个为真命题 D.、中至多有一个为真命题
过点且与直线平行的直线方程是( )
A. B. C. D.
设函数,其中,.
(1)当,时,求关于的不等式的解集;
(2)若,证明:.
在直角坐标系中,曲线的参数方程为: 为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求的极坐标方程;
(2)若直线与曲线相交于,两点,求.
已知函数.
(1)讨论的单调性;
(2)若存在两个极值点,证明:.
十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康。经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加。为了更好的制定2019年关于加快提升农民年收人力争早日脱贫的工作计划,该地扶贫办统计了2018年位农民的年收人并制成如下频率分布直方图:
(1)根据频率分布直方图,估计位农民的年平均收入(单位:千元)(同一组数据用该组数据区间的中点值表示);
(2)由频率分布直方图,可以认为该贫困地区农民年收入服从正态分布,其中近似为年平均收入,近似为样本方差,经计算得.利用该正态分布,求:
(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?
(ii)为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了位农民。若每个农民的年收人相互独立,问:这位农民中的年收入不少于千元的人数最有可能是多少?
附:参考数据与公式
则①;②;③.