函数的定义域为( )
A. B. C. D.
已知全集,,,则=( )
A. B. C. D.
已知椭圆的离心率为,以椭圆的上焦点为圆心,椭圆的短半轴为半径的圆与直线截得的弦长为.
(1)求椭圆的方程;
(2)过椭圆左顶点做两条互相垂直的直线,,且分别交椭圆于,两点(,不是椭圆的顶点),探究直线是否过定点,若过定点则求出定点坐标,否则说明理由.
如图,在直角梯形中,,,,直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.为线段的中点,为线段上的动点.
()求证:.
()当点满足时,求证:直线平面.
()当点是线段中点时,求直线和平面所成角的正弦值.
已知圆,点在圆内,在过点P所作的圆的所有弦中,弦长最小值为.
(1)求实数a的值;
(2)若点M为圆外的动点,过点M向圆C所作的两条切线始终互相垂直,求点M的轨迹方程.
某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60),[60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.
(1)求图中x的值;
(2)求这组数据的中位数;
(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.