满分5 > 高中数学试题 >

已知函数. 当时,求不等式的解集; 若,不等式对都成立,求的取值范围.

已知函数

时,求不等式的解集;

,不等式都成立,求的取值范围.

 

(1);(2). 【解析】 (1)运用两边平方和平方差公式,可得不等式的解集; (2)由题意可得,由绝对值不等式的性质可得的最大值,解不等式可得所求范围. 【解析】 函数, 即为, 可得, 即,解得, 则原不等式的解集为; 若,不等式对都成立, 即有, 由 , 可得的最大值为,, 则,解得.
复制答案
考点分析:
相关试题推荐

已知在乎面直角坐标系中,直线:(为参数),以原点为极点,轴的非负半轴为极轴,且取相同的单位长度建立极坐标系,曲线的极坐标方程为.

1)求直线的普通方程及曲线的直角坐标方程;

2)设点的直角坐标为,直线与曲线交于两点,求的值.

 

查看答案

已知函数为自然对数的底数).

1)记,求函数在区间上的最大值与最小值;

2)若,且对任意恒成立,求的最大值.

 

查看答案

已知椭圆的中心在坐标原点,焦点在轴上,离心率为,椭圆上的点到焦点距离的最大值为.

1)求椭圆的标准方程;

2)斜率为的直线与椭圆交于不同的两点,且线段的中垂线交轴于点,求点横坐标的取值范围.

 

查看答案

如图,直三棱柱中,的中点,四边形为正方形.

1)求证:平面

2)若为等边三角形, ,求点到平面的距离.

 

查看答案

为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:,得到如图所示的频率分布直方图.

1)求的值;

2)估计这100名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);

3)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀.请将下面的2×2列联表补充完整,并判断是否有99.9%的把握认为比赛成绩是否优秀与性别有关

 

优秀

非优秀

合计

男生

 

40

 

女生

 

 

50

合计

 

 

100

 

参考公式及数据:  

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.