已知函数,当,不等式的解集是______.
若函数恰有2个零点,则实数的取值范围是______.
方程的解集为______.
若正数,满足,则的最小值为______.
已知,则______.
下列命题为真命题的是( )
A.设命题:,.则:,;
B.若,,则;
C.若是定义在上的减函数,则“”是“”的充要条件;
D.若,,()是全不为0的实数,则“”是“不等式和解集相等”的充分不必要条件.
《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是后西方数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,为线段上的点,且,,为的中点,以为直径作半圆.过点作的垂线交半圆于,连结,,,过点作的垂线,垂足为.则该图形可以完成的所有的无字证明为( )
A.(,) B.(,)
C.(,) D.(,)