已知分别是椭圆的左、右焦点,直线与交于两点,,且.
(1)求的方程;
(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值.
已知函数,.
(1)若不等式对恒成立,求的最小值;
(2)证明:.
如图,在四棱锥中,平面,,,,,点为的中点.
(1)证明:.
(2)求点到平面的距离.
已知数列满足.
(1)求数列的通项公式;
(2)设数列的前项和为,证明:.
某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照共6组进行统计,得到男生、女生每周运动的时长的统计如下(表1、2),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.
表1:男生
时长 | ||||||
人数 | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
时长 | ||||||
人数 | 0 | 4 | 12 | 12 | 8 | 4 |
(1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;
(2)根据题目条件,完成下面列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.
| 每周运动的时长小于15小时 | 每周运动的时长不小于15小时 | 总计 |
男生 |
|
|
|
女生 |
|
|
|
总计 |
|
|
|
参考公式:,其中.
参考数据:
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
在棱长为的正方体中,是正方形的中心,为的中点,过的平面与直线垂直,则平面截正方体所得的截面面积为______.