满分5 > 高中数学试题 >

在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过...

在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单架分别为20元、10元,一等奖人数与二等奖人数的比值不得高于,且获得一等奖的人数不能少于2人,有下列四个结论:①最多可以购买4份一等奖奖品②最多可以购买16份二等奖奖品③购买奖品至少要花费100元④共有20种不同的购买奖品方案其中正确结论的序号为___________.

 

①②③ 【解析】 设购买一、二等奖奖品份数分别为、,则根据题意列出线性规划条件, 作出可行域,再逐一判断即可. 解: 设购买一、二等奖奖品份数分别为、, 则根据题意有 , 作可行域为: 解得:,, 所以最多可以购买4份一等奖奖品, 最多可以购买16份二等奖奖品, 故①②正确, 购买奖品至少要花费元,故③正确, 由可行域知:,,, 可行域内的整数点有 ,共个.故④错误. 故答案为: ①②③
复制答案
考点分析:
相关试题推荐

若关于的方程的根均为负数,则实数的取值范围是_________.

 

查看答案

已知则方程的根为_________.

 

查看答案

写出能说明命题“若,则”为假命题的一组的整数值:_______;_______;________.

 

查看答案

集合的真子集的个数为________.

 

查看答案

已知集合,,且对于集合中任意两个元素,,均有,则集合中元素的个数最多为(    )

A.21 B.19 C.11 D.10

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.