全集,,则图中阴影部分表示的集合是 ( )
A. B.
C. D.
下列关系表述正确的是( )
A. B. C. D.
设集合,若,则的值为 ( )
A. B. C. D.
已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩∁∪A=( )
A.{2} B.{3,4} C.{1,4,5} D.{2,3,45}
某快餐代卖店代售多种类型的快餐,深受广大消费者喜爱.其中,种类型的快餐每份进价为元,并以每份元的价格销售.如果当天20:00之前卖不完,剩余的该种快餐每份以元的价格作特价处理,且全部售完.
(1)若该代卖店每天定制份种类型快餐,求种类型快餐当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;
(2)该代卖店记录了一个月天的种类型快餐日需求量(每天20:00之前销售数量)
日需求量 | ||||||
天数 |
(i)假设代卖店在这一个月内每天定制份种类型快餐,求这一个月种类型快餐的日利润(单位:元)的平均数(精确到);
(ii)若代卖店每天定制份种类型快餐,以天记录的日需求量的频率作为日需求量发生的概率,求种类型快餐当天的利润不少于元的概率.
某机构组织语文、数学学科能力竞赛,每个考生都参加两科考试,按照一定比例淘汰后,按学科分别评出一二三等奖.现有某考场的两科考试数据统计如下,其中数学科目成绩为二等奖的考生有人.
(Ⅰ)求该考场考生中语文成绩为一等奖的人数;
(Ⅱ)用随机抽样的方法从获得数学和语文二等奖的考生中各抽取人,进行综合素质测试,将他们的综合得分绘成茎叶图(如图),求两类样本的平均数及方差并进行比较分析;
(Ⅲ)已知该考场的所有考生中,恰有人两科成绩均为一等奖,在至少一科成绩为一等奖的考生中,随机抽取人进行访谈,求两人两科成绩均为一等奖的概率.