在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;
(Ⅱ)若点在曲线上,点在曲线上,求的最小值及此时点的直角坐标.
已知函数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若存在两个极值点,,证明:.
某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在内的植物有8株,在内的植物有2株.
(Ⅰ)求样本容量和频率分布直方图中的,的值;
(Ⅱ)在选取的样本中,从高度在内的植物中随机抽取3株,设随机变量表示所抽取的3株高度在内的株数,求随机变量的分布列及数学期望;
(Ⅲ)据市场调研,高度在内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?
已知函数,其中为常数且.
(Ⅰ)若是函数的极值点,求的值;
(Ⅱ)若函数有3个零点,求的取值范围.
某学校为调查高二年级学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高(单位:)在内的男生人数有16人.
(Ⅰ)求在抽取的学生中,男、女生各有多少人?
(Ⅱ)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?
| 总计 | ||
男生人数 |
|
|
|
女生人数 |
|
|
|
总计 |
|
|
|
附:参考公式和临界值表:
,
5.024 | 6.635 | 7.879 | 10.828 | |
0.025 | 0.010 | 0.005 | 0.001 |
某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,