在①,且的虚部是2;②;③,为的共轭复数.这三个条件中任选一个,补充在下面问题中并作出解答.
注:选择不同条件,结果可能不同.
已知为虚数单位,复数满足______,设,,在复平面上的对应点分别为,,,求的面积.
已知函数,若过点P(1,t)存在3条直线与曲线相切,求t的取值范围__________。
在平面上给定相异两点A,B,设P点在同一平面上且满足,当λ>0且λ≠1时,P点的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故我们称这个圆为阿波罗斯圆,现有椭圆,A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点P满足,△PAB面积最大值为 ,△PCD面积最小值为,则椭圆离心率为______。
设集合,那么集合中满足条件“”的元素个数为______.
抛物线的焦点与双曲线的右焦点的连线交于第一象限的点.若在点处的切线平行于的一条渐近线,则双曲线的渐近线方程为______,等于______.
已知函数是定义在上的奇函数,当时,.则下列结论正确的是( ).
A.当时,
B.函数有五个零点
C.若关于的方程有解,则实数的取值范围是
D.对,恒成立