( )
A. B. C. D.
设函数.
(1)若在点处的切线为,求的值;
(2)求的单调区间;
(3)若,求证:在时,.
椭圆的左、右焦点分别是,,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1.
(1)求椭圆的方程;
(2)点是椭圆上除长轴端点外的任一点,连接,,设的角平分线交的长轴于点,求的取值范围;
(3)在(2)的条件下,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线,的斜率分别为,,若,证明为定值,并求出这个定值.
如图,已知直三棱柱中,,,,,分别是,,的中点,点在直线上运动,且.
(1)证明:无论取何值,总有平面;
(2)是否存在点,使得平面与平面的夹角为?若存在,试确定点的位置,若不存在,请说明理由.
为了缓解城市交通压力,某市市政府在市区一主要交通干道修建高架桥,两端的桥墩现已建好,已知这两桥墩相距m米,“余下的工程”只需建两端桥墩之间的桥面和桥墩.经测算,一个桥墩的工程费用为256万元;距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素.记“余下工程”的费用为y万元.
(1)试写出工程费用y关于x的函数关系式;
(2)当m=640米时,需新建多少个桥墩才能使工程费用y最小?并求出其最小值.
从1到9的九个数字中取三个偶数四个奇数,试问:
(1)能组成多少个没有重复数字的七位数?
(2)上述七位数中三个偶数排在一起的有几个?
(3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?
(4)在(1)中任意两偶数都不相邻的七位数有几个?