已知圆C过点且圆心在直线上
(1)求圆C的方程
(2)设直线与圆C交于A、B两点,是否存在实数a使得过点P(2,0)的直线垂直平分AB?若存在,求出a值,若不存在,说明理由.
是定义在区间上的奇函数,且
(1)求解析式;
(2)证明为增函数;
(3)求不等式的解.
已知中,,,平面,,、分别是、
上的动点,且.
(1)求证:不论为何值,总有平面平面;
(2)为何值时,平面平面?
已知线段AB的两个端点A、B分别在x轴和y轴上滑动,且∣AB∣=2.
(1)求线段AB的中点P的轨迹C的方程;
(2)求过点M(1,2)且和轨迹C相切的直线方程.
如图所示,在直三棱柱中,,,,点是的中点.
(1)求证:;
(2)求证:平面;
(3)求异面直线与所成角的余弦值.
已知函数且在区间[,4]上的最大值与最小值的差为3,求的值.