满分5 > 高中数学试题 >

如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,的中点. (1)求证:平...

如图,在三棱锥中,平面平面为等边三角形,分别为的中点.

(1)求证:平面

(2)求证:平面平面

(3)求三棱锥的体积.

 

(1)见解析;(2)见解析;(3). 【解析】 试题(Ⅰ)利用三角形的中位线得出OM∥VB,利用线面平行的判定定理证明VB∥平面MOC;(Ⅱ)证明OC⊥平面VAB,即可证明平面MOC⊥平面VAB;(Ⅲ)利用等体积法求三棱锥A-MOC的体积即可 试题解析:(Ⅰ)证明:∵O,M分别为AB,VA的中点, ∴OM∥VB, ∵VB⊄平面MOC,OM⊂平面MOC, ∴VB∥平面MOC; (Ⅱ)证明:∵AC=BC,O为AB的中点, ∴OC⊥AB, 又∵平面VAB⊥平面ABC,平面ABC∩平面VAB=AB,且OC⊂平面ABC, ∴OC⊥平面VAB, ∵OC⊂平面MOC, ∴平面MOC⊥平面VAB (Ⅲ)在等腰直角三角形中,, 所以. 所以等边三角形的面积. 又因为平面, 所以三棱锥的体积等于. 又因为三棱锥的体积与三棱锥的体积相等, 所以三棱锥的体积为.
复制答案
考点分析:
相关试题推荐

基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验.某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:

月份

2017.8

2017.9

2017.10

2017.11

2017.12

2018.1

月份代码x

1

2

3

4

5

6

市 场占有率y(%)

11

13

16

15

20

21

 

(1)请在给出的坐标纸中作出散点图;

(2)求y关于x的线性回归方程,并预测该公司20182月份的市场占有率;

参考公式:回归直线方程为    其中:,

 

查看答案

《汉字听写大会》不断创收视新高,为了避免“书写危机”,弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况.发现被测试市民正确书写汉字的个数全部在160184之间,将测试结果按如下方式分成六组:第1,第2,…,第6,如图是按上述分组方法得到的频率分布直方图.

(1)试估计该市市民正确书写汉字的个数的平均数与中位数;

(2)已知第4组市民中有3名男性,组织方要从第4组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

 

查看答案

盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次.

(1)求取到的2个球中恰好有1个是黑球的概率;

(2)求取到的2个球中至少有1个是红球的概率.

 

查看答案

已知函数,若函数有3个零点,则实数的取值范围是________

 

查看答案

在正方体中,直线与面所成角的正弦为__________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.