直线(为常数)经过定点( )
A. B. C. D.
已知空间向量,,若,则实数( )
A. B. C. D.
直线在轴上的截距为( )
A. B. C.2 D.
已知椭圆E:的左、右焦点分别为F1,F2,离心率为,点A在椭圆E上,∠F1AF2=60°,△F1AF2的面积为4.
(1)求椭圆E的方程;
(2)过原点O的两条互相垂直的射线与椭圆E分别交于P,Q两点,证明:点O到直线PQ的距离为定值,并求出这个定值.
如图在直角梯形ABCD中,AB//CD,AB⊥BC,AB=3BE=3,CD=2,AD=2.将△ADE沿DE折起,使平面ADE⊥平面BCDE.
(1)证明:BC⊥平面ACD;
(2)求直线AE与平面ABC所成角的正弦值.
设点,满足|PA|=2|PB|的点的轨迹是圆M:x2+y2x+Ey+F=0.直线AB与圆M相交于C,D两点,,且点C的纵坐标为.
(1)求a,b的值;
(2)已知直线l:x+y+2=0与圆M相交于G,H两点,求|GH|.