已知,,,函数.
(1)当时,求不等式的解集;
(2)若的最小值为,求的值,并求的最小值.
在平面直角坐标系中,曲线,以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程和曲线的直角坐标方程;
(2)设点在曲线上,直线交曲线于点,求的最小值.
已知函数.
(1)讨论函数的单调性;
(2)证明:当时,函数有三个零点.
已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)设椭圆在左、右顶点分别为、,左焦点为,过的直线与交于、两点(和均不在坐标轴上),直线、分别与轴交于点、,直线、分别与轴交于点、,求证:为定值,并求出该定值.
如图,已知四棱柱的底面是正方形,侧面是矩形,,为的中点,平面平面.
(1)证明:平面;
(2)判断二面角是否为直二面角,不用说明理由;
(3)求二面角的大小.
如图,在矩形中,,,点、分别在边、上,,.
.
(1)求,(用表示);
(2)求的面积的最小值.