已知椭圆C:1(a>b>0),其右焦点为F(1,0),离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F作倾斜角为α的直线l,与椭圆C交于P,Q两点.
(ⅰ)当时,求△OPQ(O为坐标原点)的面积;
(ⅱ)随着α的变化,试猜想|PQ|的取值范围,并证明你的猜想.
已知函数f(x)=ax2+ax﹣1(a∈R).
(Ⅰ)当a=1时,求f(x)>0的解集;
(Ⅱ)对于任意x∈R,不等式f(x)<0恒成立,求a的取值范围;
(Ⅲ)求关于x的不等式f(x)<0的解集.
如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥AB,PA⊥AD.
(Ⅰ)求证:PA⊥平面ABCD;
(Ⅱ)已知PA=AD,点E在PD上,且PE:ED=2:1.
(ⅰ)若点F在棱PA上,且PF:FA=2:1,求证:EF∥平面ABCD;
(ⅱ)求二面角D﹣AC﹣E的余弦值.
已知O是坐标原点,M,N是抛物线y=x2上不同于O的两点,OM⊥ON,
有下列四个结论:
①|OM|•|ON|≥2;
②;
③直线MN过抛物线y=x2的焦点;
④O到直线MN的距离小于等于1.
其中,所有正确结论的序号是_____.
已知数列{an}中,a1=1,前n项和(n∈N*),那么a2的值为_____,数列{an}的通项公式为_____.
若x>0,y>0,且x+2y=1,则xy的最大值为_____.