执行下图的程序框图,如果输入,那么输出__________.
某农科所对冬季昼夜温差()与某反季节新品种大豆种子的发芽数(颗)之间的关系进行分析研究,他们分别记录了12月1日至12月5日每天的昼夜温差与实验室每天每100颗种子的发芽数,得到的数据如下表所示:
| 12月1日 | 12月2日 | 12月3日 | 12月4日| | 12月5日 |
() | 10 | 11 | 13 | 12 | 8 |
(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取3组求线性回归方程,剩下的2组数据用于线性回归方程的检验.
(1)请根据12月2日至12月4日的数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选的验证数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得到的线性回归方程是否可靠?如果可靠,请预测温差为14时种子的发芽数;如果不可靠,请说明理由.
参考公式:
在中,角、、对边分别是、、,并且.
(1)求证:;
(2)若,判断的形状.
砂糖橘是柑橘类的名优品种,因其味甜如砂糖故名.某果农选取一片山地种植砂糖橘,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图所示.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的倍.
(1)求a,b的值;
(2)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.
以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中经X表示.
(1)如果X=8,求乙组同学植树棵数的平均数和方差
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率
为缓解堵车现象,解决堵车问题,银川市交警队调查了甲、乙两个路口的车流量,在2019年6月随机选取了14天,统计每天上午7:30-9:00早高峰时段各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.
(1)甲、乙两个路口的车流量的中位数分别是多少?
(2)试计算甲、乙两个路口的车流量在之间的频率.