用清水漂洗衣服上残留的洗衣液,对用一定量的清水漂洗一次的效果作如下假定:用1个单位量的水可洗掉衣服上残留洗衣液质量的一般,用水越多漂洗效果越好,但总还有洗衣液残留在衣服上.设用单位量的清水漂洗一次后,衣服上残留的洗衣液质量与本次漂洗前残留的洗衣液质量之比为函数,其中.
(1)试规定的值,并解释其实际意义;
(2)根据假定写出函数应该满足的条件和具有的性质,并写出满足假定的一个指数函数;
(3)设函数.现有()单位量的清水,可供漂洗一次,也可以把水平均分成2份后先后漂洗两次,试确定哪种方式漂洗效果更好?并说明理由.
已知,,,.
(1)求和的值;
(2)比较与的大小,并说明理由.
已知全集,集合,集合.
(1)若,求和;
(2)若,求实数的取值范围.
已知函数,.现有如下两种图象变换方案:
方案1:将函数的图像上所有点的横坐标变为原来的一半,纵坐标不变,再将所得图象向左平移个单位长度;
方案2:将函数的图象向左平移个单位长度,再将所得图象上所有点的横坐标变为原来的一半,纵坐标不变.
请你从中选择一种方案,确定在此方案下所得函数的解析式,并解决如下问题:
(1)画出函数在长度为一个周期的闭区间上的图象;
(2)请你研究函数的定义域,值域,周期性,奇偶性以及单调性,并写出你的结论.
在平面直角坐标系中,已知平面向量,,.
(1)求证:与垂直;
(2)若与是共线向量,求实数的值.
请先阅读下面的材料:对于等式(,且),如果将视为自变量,视为常数,为关于(即)的函数,记为,那么,是幂函数;如果将视为常数,视为自变量,为关于(即)的函数,记为,那么,是指数函数;如果将视为常数,视为自变量,为关于(即)的函数,记为,那么,是对数函数.事实上,由这个等式还可以得到更多的函数模型.例如,如果为常数e(自然对数的底),将视为自变量,则为的函数,记为,那么_______,若将表示为的函数,则_________(,且).