已知集合,其中,由中的元素构成两个相应的集合:
,.
其中是有序数对,集合和中的元素个数分别为和.
若对于任意的,总有,则称集合具有性质.
(Ⅰ)检验集合与是否具有性质并对其中具有性质的集合,写出相应的集合和.
(Ⅱ)对任何具有性质的集合,证明.
(Ⅲ)判断和的大小关系,并证明你的结论.
已知圆A:,圆B:.
(Ⅰ)求经过圆A与圆B的圆心的直线方程;
(Ⅱ)已知直线l:,设圆心A关于直线l的对称点为,点C在直线l上,当的面积为14时,求点C的坐标.
已知四棱锥的底面ABCD是菱形,平面ABCD,,,F,G分别为PD,BC中点,.
(Ⅰ)求证:平面PAB;
(Ⅱ)求三棱锥的体积;
(Ⅲ)求证:OP与AB不垂直.
甲、乙两位同学参加数学应用知识竞赛培训,现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:
(Ⅰ)分别估计甲、乙两名同学在培训期间所有测试成绩的平均分;
(Ⅱ)从上图中甲、乙两名同学高于85分的成绩中各选一个成绩作为参考,求甲、乙两人成绩都在90分以上的概率;
(Ⅲ)现要从甲、乙中选派一人参加正式比赛,根据所抽取的两组数据分析,你认为选派哪位同学参加较为合适?说明理由.
在三棱柱中,平面ABC,,,D,E分别为AB,中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:四边形为平行四边形;
(Ⅲ)求证:平面平面.
如图,在中,,,,.
(Ⅰ)求AB;
(Ⅱ)求AD.